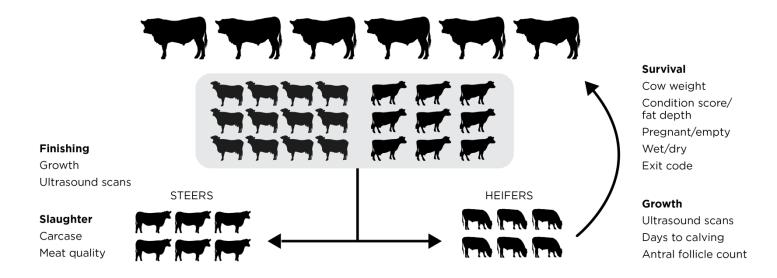


Beef Progeny Test
Sire Report: Cohort 2

APRIL 2019


B+LNZ Genetics Beef Progeny Test

The Beef Progeny Test (BPT) compares bulls under New Zealand commercial farming conditions. The test was established in 2014 and involves mating about 2200 cows and heifers on five large properties across New Zealand every year. Steers are assessed on their finishing performance and carcase traits, while replacement heifers are tracked for their maternal characteristics. In 2018 the Dairy Beef Progeny Test was incorporated to take the test to 300 commercial beef and dairy cow matings.

A mix of both internationally-sourced and New Zealand semen has been used. The breeds include Angus, Hereford, Stabilizer, Simmental and Charolais. Some bulls are specifically included to provide genetic links to international programmes, where carcase data is being collected (e.g. the Australian Angus Sire Benchmark Programme, Hereford Progeny Test and Angus Sire Alliance). Over time, the test will:

- Evaluate maternal performance and survival for different cow types in commercial conditions.
- Generate potential new EBVs for cow performance e.g. antral follicle count (measured in heifers to predict cow fertility); cow condition score; and cow stayability.
- Evaluate the relationship between maternal performance, finishing performance and carcase quality/market attributes.
- Evaluate across breeds.

Beef Progeny Test: evaluating finishing and/or maternal performance

Acknowledgements

The BPT project is a partnership which includes: Progeny test properties: Whangara Farms (Gisborne), Landcorp's Rangitaiki Station (Taupo), Taratahi's Tautane Station (Hawke's Bay), the Black family's Mendip Hills Station (North Canterbury) and Lonestar's Caberfeidh Farm (South Canterbury).

Project sponsors: Focus Genetics and Simmental New Zealand.

Industry partners: AbacusBio, Angus New Zealand, New Zealand Hereford Association, New Zealand Charolais Association.

Participating herds: Thank you to the numerous bull owners and nominators that have entered the progeny test. For sire information please visit our website:

Contact

For further questions about the Beef Progeny Test contact Max Tweedie:

Mobile: 027 404 5205

Email: max.tweedie@blnzgenetics.com

B+LNZ Genetics Dunedin office:

Phone: 03 477 6632

Science design: Jason Archer

Understanding the sire report

This listing provides an indication on how the sires are performing within the BPT, and can't be directly compared against BREEDPLAN EBVs. For selection purposes it is strongly advised that BREEDPLAN EBVs and selection indexes be used primarily. They are the highest accuracy information to use in selection as they take into account all available industry data. BPT data will be made available for incorporating into BREEDPLAN EBVs, although current EBVs do not include the data. They also account for information from all known relatives and genetic correlations between traits as well as being able to be compared across cohorts and the breed population.

Interpreting the Progeny Performance Listing

N. Calves = Number of recorded progeny of both sexes by each sire. This excludes any progeny in single animal contemporary groups and largely excludes heifer progeny for abattoir carcass results- bar terminal sired heifers.

Trait = The average performance of sires' progeny. This is calculated using a least squares means (LSM) model which adjusts for herd, management group, age of dam and age of animal based on estimated conception date.

Rank = The ranking position of the sire within the cohort. The ranking order will depend on the trait. E.g. 200 Day weight ranked in descending order, while conception date is in ascending order. The length of the coloured bars are related to the ranking i.e. higher ranked sires will have longer bars.

Trait Definitions

Trait	Unit	Definition	Ranking Order
		Weight at weaning recorded on steer and	
Weaning Weight	Kg's	heifer progeny	Sires are ranked in descending order with higher values indicating more weight
		Weight at 1 year recorded on steer and	
Yearling Weight	Kg's	heifer progeny	Sires are ranked in descending order with higher values indicating more weight
		Weight at 18 months recorded on steer and	
18 month Weight	Kg's	heifer progeny	Sires are ranked in descending order with higher values indicating more weight
		Number of days from natural bull	
		introduction to conception- at first joining	
		as yearling heifers. Recorded using	Sires are ranked in ascending order with lower values indicating fewer days to conception and improved female
Conception Date	Days	Ultrasound scanned foetal aging	reproduction
	Transformed Beefclass	Rear Legs Hind View angle recorded by	
	structural assesment score as	accredited Beefclass asessor at 18 months	
Rear Legs Hind View	a deviation from ideal	on steer and heifer progeny	Sires are ranked in ascending order with lower values indicating improved structure
	Transformed Beefclass	Front Feet Angle recorded by accredited	
	structural assesment score as	Beefclass asessor at 18 months on steer and	
Front Feet Angle	a deviation from ideal	heifer progeny	Sires are ranked in ascending order with lower values indicating improved structure
	Transformed Beefclass	Front Feet Claw Set recorded by accredited	
	structural assesment score as	Beefclass asessor at 18 months on steer and	
Front Feet Claw Set	a deviation from ideal	heifer progeny	Sires are ranked in ascending order with lower values indicating improved structure

Trait	Unit	Definition	Ranking Order
		Area of Eye Muscle as captured at the	
		12th/13th rib site from ultrasound scanning	
Scan Eye Muscle Area (EMA)	Cm2	both steer and heifer progeny at 18 months	Sires are ranked in descending order with higher values indicating larger eye muscle area
		Rib Fat captured at the 12th/13th rib site	
Scan Rib Fat		from ultrasound scanning both steer and	Construction of the description and according to the brightness of the second of the s
Scall Kib Tai	mm	heifer progeny at 18 months of age Rump Fat captured at the P8 site from	Sires are ranked in descending order with higher values indicating more fat over the ribs
		ultrasound scanning both steer and heifer	
Scan Rump Fat	mm	progeny at 18 months of age	Sires are ranked in descending order with higher values indicating more fat over the rump
		progerity at 10 morning of ago	Silver and tarked in assessment ground transfer values malearing more fail of a mereaning
		Intramuscular Fat captured at the 12th/13th	
		rib site from ultrasound scanning both steer	
Scan Inframuscular Fat (IMF)	%	and heifer progeny at 18 months of age	Sires are ranked in descending order with higher values indicating more intramuscular fat
		Weight of the hot carcass at slaughter	
		recorded on steer progeny- and terminal	
Abattoir Carcass Weight	Kg's	sired heifers	Sires are ranked in descending order with higher values indicating more carcass weight
3		Weight of the hot carcass recorded on	
		steer progeny- and terminal sired heifers,	
Abattoir Dressing Percentage	%	relative to liveweight at slaughter	Sires are ranked in descending order with higher values indicating more dressing
		Percentage progeny that achieved Beef EQ	
		reserve grade, generated from the Beef EQ	
		index- an indication of the overall eating	
		quality of beef as influenced by a range of	
Abattoir Beef EQ Reserve		traits. Traits recorded by SFF Beef EQ master	
Grade	%	grader in the chiller on steer progeny- and terminal sired heifers	Sires are ranked in descending order with higher values indicating higher eating quality
Ordac	70	Eye muscle area at the 12th/13th rib site	sites are talked in descending older with higher values maleding higher earling quality
		recorded by photograph in the chiller on	
Abattoir Eye Muscle Area	Cm2	steer progeny- and terminal sired heifers	Sires are ranked in descending order with higher values indicating larger eye muscle areas
·		Subcutaneous fat measurement at the	
		12th/13th rib site recorded by SFF Beef EQ	
		master grader in the chiller on steer	
Abattoir Rib Fat	mm	progeny- and terminal sired heifers	Sires are ranked in descending order with higher values indicating more fat over the ribs
		Marble score recorded by SFF Beef EQ	
A la culta in A4 curls II		master grader in the chiller on steer	
Abattoir Marbling	MSA Marble Score	progeny- and terminal sired heifers	Sires are ranked in descending order with higher values indicating more marbling in the carcass
		Ossification score recorded by SFF Beef EQ	
Abattoir Ossification	Score	master grader in the chiller on steer	Sires are ranked in according order with lower values indicating vounger physiological maturity at slaughter
Abditor Ossiliculturi	2016	progeny- and terminal sired heifers	Sires are ranked in ascending order with lower values indicating younger physiological maturity at slaughter

Other traits

Other traits were recorded but are not included in the sire report because;

- The trait showed very little variation i.e. it is not under significant genetic control. These traits included pH, fat colour, meat colour.
- There was not enough progeny recorded for the sires average to be useful e.g. maternal traits are not recorded on terminal sire's progeny.

Proving EBVs

Expectation (Growth example)

1kg in Bull EBV = 0.5kg in actual calf weaning weight

- In the calf- half the calf genes come from the dam and half from the sire. SO, we expect that half of the bulls EBV will be passed on to his calves in ACTUAL calf weight. Or, if we compare two bulls; Bull #1 EBV= 80kg, Bull #2 EBV= 40kg you would expect to see a difference of 20kg in actual average calf weight between 1 & 2.
- We expect the sires EBVs to (on average) perform well in predicting the performance of their calves. In doing this they should show a positive upward slope where groups of bulls have better EBVs and a result- their calves are better. In a perfect world the slope of the graph would be slope = 0.5 where the EBV perfectly predicts calf performance. However, it is most useful to see whether there is a positive trend line, as EBVs are estimated. This shows us whether selection on an EBV will deliver actual improvement on a commercial farm. How strong that trend-line is compared to the theoretical expected value of 0.5, is the relationship to look at when proving an EBV to work (or not).

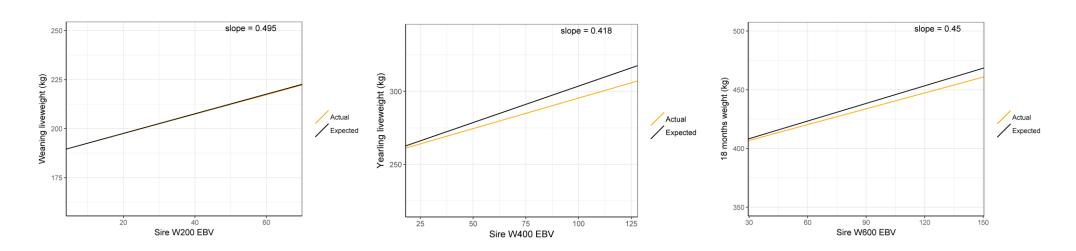
Reality (Growth example)

1kg in Bull EBV = 0.49kg in calf weaning weight

- This is a strong result. That means 99% of the sires EBV has been turned into extra calf weight at weaning.
- Most sires EBVs (across the traits) lined up well and predicted the performance of their calves. On average they did a good job of improving ACTUAL performance. In fact, 73% of the sires EBVs (that we looked at) turned into actual calf performance.
- If you use improved EBVs you will get improved calves.

So why bother?

- Most traits are developed into EBVs because they have an economic consequence or result in more or less revenue.
- Better EBVs = better calves = better money

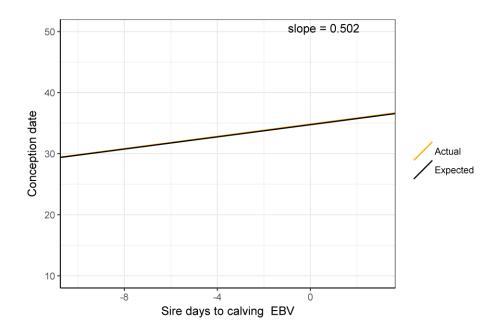


Proving Growth

	Expectation	Reality	Result	% of EBV turned into calf performance	So why bother?
200 Day Weight EBV	1kg in Bull EBV = 0.5kg in calf weight	1kg in Bull EBV = 0.49kg in calf weight	Strong	99%	The heaviest sire's calves had an extra 19kg at weaning. At \$4/kg* that's worth an extra \$76 per calf
400 Day Weight EBV	1kg in Bull EBV = 0.5kg in calf weight	1kg in Bull EBV = 0.41kg in calf weight	Strong	82%	The heaviest sire's calves had an extra 43kg as yearlings. At \$3/kg* that's worth an extra \$129 per calf
600 Day Weight EBV	1kg in Bull EBV = 0.5kg in calf weight	1kg in Bull EBV = 0.45kg in calf weight	Strong	90%	The heaviest sire's calves had an extra 66kg at 18 months. At \$3/kg* that's worth an extra \$198 per calf

^{*} Beef + Lamb NZ Economic Service 2018

Proving Growth: Matching EBVs to actual calf weight (expected slope = 0.5)



Proving Fertility

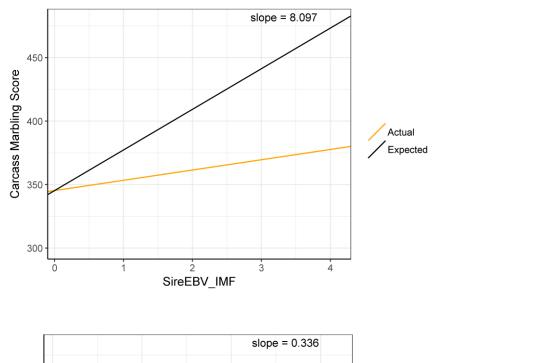
	Expectation	Reality	Result	% of EBV turned into calf performance	So why bother?
Days to Calving EBV*	1day in Bull EBV = 0.5 days in heifer conception date- days to calving*	1kg in Bull EBV = 0.50 days in heifer conception date	Strong	100%	Cows that get in calf early have more productive lifetimes. 1 day of conception date results in an approximate extra 1% calving rate. That's an extra calf at \$900 or \$9 per cow (across the herd).

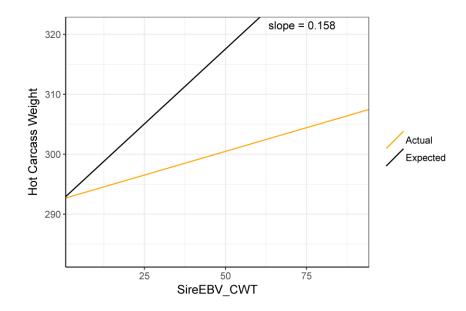
^{*} Conception date as recorded in the BPT is calculated similarly to DTC but doesn't include Gestation length and is based off conception.

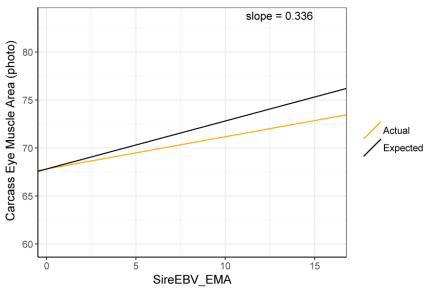
B+LNZ Genetics Beef Progeny Test: Cohort 2 summary of adjusted progeny averages (rank) across 52 sires

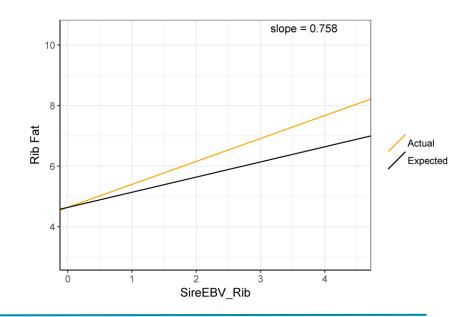
					Growth				Fertility		Rear Leg		Structure Front Feet		Front Feet			
			Herdbook		Wean Wt		Yearling Wt		18 mth Wt		Conception		Hind View (deviation	NOW	Angle (deviation		Claw Set (deviation	
Breed	Born	Name	number	N. Calves		Rank	(kg)	Rank	(kg)	Rank		Rank		Rank 🖁 🗒	from ideal)	Rank S	from ideal)	Rank
NZ Angus	2014	FOCUS 143143	194990143143		209.0	11	280.3	15	450.8	4	26.4	14	0.95	40	0.86	32	0.87	<mark>4</mark> 8
NZ Angus	2013	FOCUS 131511	194730131511		201.1	50	266.3	50	432.2	40	26.4	17		50		21	0.85	39
NZ Angus	2013	FOCUS 131539	194730131539		202.1	48	272.3	43	420.2	50	26.6	25	0.98	44		22	0.87	50
NZ Angus	2013	KAKAHU BOND 13007	13300013007		205.0	31	279.3	21	436.8	31	26.0	01	0.82	17 14		19	0.82	22
NZ Angus	2013	KAKAHU JUBILANT 13054 LINTON 13543	13300013054 20305013543		210.6	37	275.1 274.6	34	429.7 431.9	43	26.6	20	0.81			23	0.82	23
NZ Angus			19134010540		204.1	3/	274.6	37	436.2	41	26.6 26.7	28	0.81	15		28	0.80	15
NZ Angus NZ Angus	2010	MEADOWSLEA F540 MT MABLE FAT BOY 373	12188006373		200.4	51	264.7	51	436.2	51	26.7	32	0.84	20		31 30	0.78	32
NZ Angus	2013	STORTH OAKS EVEREST J20	19507013J20		204.8	33	277.7	25	432.3	38	26.6	20	0.99	47		45	0.83	34
NZ Angus	2013	STORTH OAKS JACK J7	19507013JZ		210.2	6	279.4	20	454.6	2	26.5	10	0.94	39		29	0.83	31
NZ Angus	2013	TE MANIA JONAH 13588	16932013588		204.5	35	269.7	47	436.9	30	26.9	35	0.85	23		26	0.77	3
NZ Angus	2009	TURIHAUA SIR CRUMBLE E222	17691009E222		207.7	18	277.5	26	438.5	26	26.4	8	0.73	3		25	0.81	18
NZ Angus	2008	WAITANGI D213	18954008D213		203.0	45	272.0	44	431.4	42	26.4	9	0.91	36		11	0.78	7
NZ Angus	2012	WHANGARA 12323	13649012323		209.3	9	280.0	16	443.8	12	26.1	3	0.79	11		38	0.85	43
Intl Angus	2012	DEER VALLEY ALL IN (USA)		27	209.5	8	286.1	3	439.0	23	26.7	33	0.96	41		44	0.85	41
Intl Angus	2011	V A R RESERVE 1111 (USA)		18	208.1	16	271.2	45	427.6	46	26.4	16	0.99	48		36	0.83	30
Intl Angus	2011	TE MANIA GARTH G67		25	206.7	20	283.5	8	445.0	9	26.6	27	1.03	51		4 6	0.88	51
Intl Angus	2008	TUWHARETOA REGENT D145 (AUS)	AUBNAD145	40	209.0	10	278.2	23	442.0	15	26.1	2	0.91	37	0.89	39	0.86	46
NZ Hereford	2011	ARDO FARGO 1154	277111154	25	199.9	52	261.0	52	421.1	49	26.4	15	0.83	19		50	0.84	38
NZ Hereford	2008	BLUESTONE 080014	1683080014	6	205.8	27	279.6	19	432.9	37	26.4	11	0.90	34	0.75	7	0.80	14
NZ Hereford	2013	COLRAINE CODE WORD 13 139	1660130139	18	203.5	44	274.7	36	455.2	1	26.3	7	0.88	32	0.79	14	0.84	37
NZ Hereford	2008	GRASSMERE SPARK 555	200080555	19	202.4	47	275.1	35	440.1	19	26.4	13	0.76	4	0.76	10	0.79	10
NZ Hereford	2012	KOANUI CHIEFLY 2510	216122510	13	208.0	17	281.5	11	440.7	18	26.5	21	0.86	26		33	0.85	40
NZ Hereford	2010	KOANUI UNANIMOUS 0408	216100408	12	201.5	49	273.2	41	433.7	36	26.7	31	0.90	35		52	0.82	28
NZ Hereford	2012	LIMEHILLS STAMPER 20719	677120719	18	208.2	15	275.9	31	439.4	21	26.5	20	0.84	21	0.75	5	0.80	16
NZ Hereford	2011	MONYMUSK GALLANT 110089	272110089	11	203.6	43	272.9	42	449.2	6	26.5	18	0.77	6		17	0.79	9
NZ Hereford	2012		617120008	16	206.1	22	276.3	29	438.6	25	26.4	10	0.88	31	0.75	8	0.79	13
NZ Hereford	2012	ORARI GORGE MISCHIEF 120083		19	210.9	4	285.8	4	428.4	45	26.4	12	1.00	49		42	0.79	12
Intl Hereford	2011	EFBEEF U208 FORTUNE Y848 (USA)		25	204.9	32	273.3	40	424.1	48	26.6	24	0.86	24		<mark>4</mark> 8	0.82	25
Intl Hereford	2009	WIRRUNA ECHUCA E99		25	208.7	12	279.7	18	438.7	24	26.3	5	0.87	27		35	0.82	29
NZ Stabilizer	2012	FOCUS BIG GENE 121293	121293	25	211.7	2	283.4	9	442.3	13	26.5	22	1.11	52	0.69	1	0.79	11
NZ Stabilizer	2012	FOCUS FOREFRONT 121599	121599	30	203.0	46	275.3	33	432.3	39	26.6	23	0.87	28 42		13	0.80	17
NZ Stabilizer NZ Stabilizer	2013	FOCUS FORCEFUL 135159 FOCUS TRINITY 135263	135159 135263	20 19	204.3	36 34	270.9 281.4	40	416.8 438.3	52	26.1 26.6	20	0.97	1		51 2	0.77	10
NZ Stabilizer	2013	FOCUS PORTERHOUSE 135361		31	204.6	29	274.4	20	427.5	47	26.7	24	0.98	45		49	0.95	52
NZ Simmental	2013	GLENSIDE CATALYST C23		14	203.1	40	268.7	48	434.8	3.5	20.7	04	0.78	α		6	0.73	1
NZ Simmental	2009	KERRAH AX49		13	205.7	28	279.9	17	439.1	22			0.97	43		34	0.86	47
NZ Simmental	2013	KERRAH BANDWAGON B306		14	204.0	38	267.3	10	435.7	3/			0.79	0	0.80	16	0.86	44
NZ Simmental	2013	KERRAH BANKER B464		14	206.4	21	283.9	7	441.8	16			0.88	33		15	0.81	21
NZ Simmental	2014	RISSINGTON AC244	0049A C0244		205.9	2.5	278.1	24	445.6	8			0.83	18		20	0.82	26
NZ Simmental	2013	WAIKITE AB2038		14	203.8	41	276.3	30	442.1	14			0.98	46		9	0.81	20
NZ Simmental	2012	WAIKITE AMPLE AA 2241		14	203.8	42	276.8	28	438.1	28			0.87	29		37	0.81	19
NZ Simmental	2014	WAIKITE AC2016	1455AC2016		205.9	26	281.0	13	444.7	10			0.86	25		<mark>4</mark> 7	0.84	35
Intl Simmental	2012	CDI RIMROCK 325Z (USA)	US2700121	13	212.3	1	288.2	1	453.3	3			0.78	7	0.71	3	0.77	4
Intl Simmental	2008	HOOKS YELLOWSTONE 97Y (USA)	US2612546	15	210.0	7	277.2	27	439.8	20			0.85	22	0.72	4	0.78	8
Intl Simmental	2003	RIVERBEND TAMARACK 60N PF (CAN)	CA 618651	12	208.6	13	274.1	39	437.9	29			0.91	38	0.78	12	0.75	2
NZ Charolais	2013	CENTREWOOD 130516	001130516E	14	206.1	23	280.7	14	443.9	11			0.82	16	0.90	41	0.86	45
NZ Charolais	2011	HEMINGFORD GAMBLER G44	803110044E	6	205.0	30	275.5	32	441.5	17			0.79	10	0.84	27	0.83	33
NZ Charolais	2007	KAITOKE COMMODORE C22	471070022E	12	211.0	3	284.0	6	446.5	7			0.88	30		40	0.82	27
NZ Charolais	2011	SILVERSTREAM GEDDES G102		13	204.0	39	285.2	5	428.5	44			0.80	13		43	0.84	36
NZ Charolais	2004	SIMCA HILLS VEEDUB		6	208.3	14	287.4	2	449.8	5			0.80	12		18	0.82	24
Intl Charolais	2010	LEACHMAN WHITE GOLD P0002X (USA)	USM796550	6	207.5	19	281.6	10	436.6	32			0.73	2		24	0.87	<mark>4</mark> 9
Minimum				5	199.9		261.0		416.8		26.0		0.63		0.69		0.73	
Average				19	206.1		277.1		437.4		26.5		0.87		0.84		0.82	
Maximum				40	212.3		288.2		455.2		26.9		1.11		1.04		0.95	
											Lower		Lower		Lower		Lower	
		Longer colored bars are associated with higher rank- which is more									number		number		number		number	
To note:		preferable									more preferrable		more preferrable		more preferrable		more preferrable	
to note.		preferable									preterrable		preferrable		preferrable		pretendble	

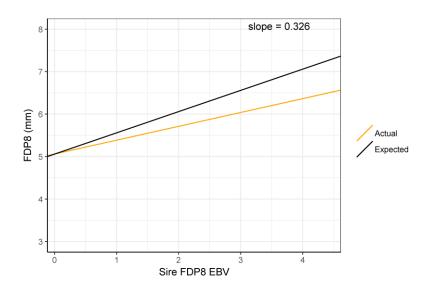
beef-lamb GENETICS

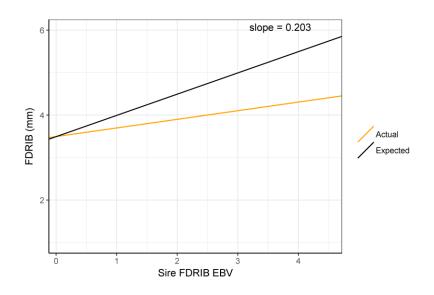

Proving Carcass: At the works

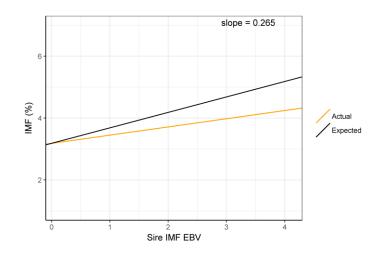

	Expectation	Reality	Result	% of EBV turned into calf performance	So why bother?
Rib Fat EBV	1mm in Bull EBV= 0.5mm in calf rib fat	1mm in Bull EBV= 0.75mm in calf rib fat	Strong	151%	If premiums total 40c/kg for high quality carcass' from processors that grade for rib fat that's worth an extra \$120 per carcass. A minimum of 3mm rib fat is required in most grading systems to avoid cold shortening (tough meat)
Eye Muscle Area EBV	1cm2 in Bull EBV= 0.5 cm2 in calf EMA	1cm2 in Bull EBV= 0.33 cm2 in calf EMA	Moderate	67%	Improved eye muscle area is associated with increased meat yield or dressing percentage
Intra Muscular Fat EBV*	1% in Bull EBV= 32 in calf MSA Marble Score*	1% in Bull EBV= 8.0 in calf MSA Marble Score	Satisfactory	25%	If premiums total 40c/kg for high quality carcass' from processors that grade for Marble Score that's worth an extra \$120 per carcass. Marbling is a key reason for carcass' failing to meet EQ grading systems specifications
Carcass Weight EBV	1kg in Bull EBV= 0.5kg in calf carcass weight	1kg in Bull EBV= 0.15kg in calf carcass weight	Satisfactory	32%	The heaviest sire's calves had an extra 17kg of cwt. At \$5.50/kg** that's worth an extra \$93.50 per carcass

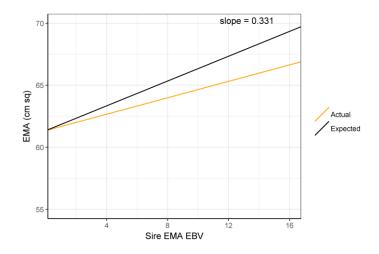

^{*}MSA marble score has been scaled to relate to IMF%. So expectation is moderate.

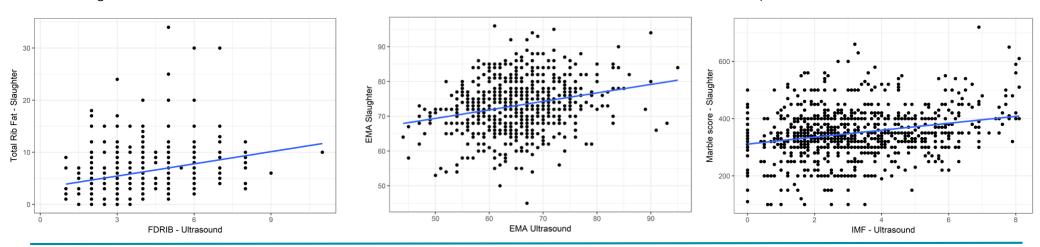

^{**} Beef + Lamb NZ Economic Service 2018






Proving Carcass: Ultrasound Scanning


	Expectation	Reality	Result	% of EBV turned into calf performance	So why bother?				
Rib Fat EBV	1mm in Bull EBV= 0.5mm in calf rib fat	1mm in Bull EBV= 0.20mm in calf rib fat	Satisfactory	40%	If premiums total 40c/kg for high quality carcass' from processors that grade for eating quality that's worth an extra \$120				
Rump Fat EBV	1mm in Bull EBV= 0.5mm in calf rump fat	1mm in Bull EBV= 0.32mm in calf rump fat	Moderate	65%	per carcass.				
Eye Muscle Area EBV	1cm2 in Bull EBV= 0.5 cm2 in calf EMA	1cm2 in Bull EBV= 0.33 cm2 in calf EMA	Moderate	66%					
Intra Muscular Fat EBV	1% in Bull EBV= 0.5% in calf IMF%	1% in Bull EBV= 0.27% in calf IMF%	Moderate	54%					



Relationship between Ultrasound scanning traits (for carcass) and abattoir collected carcass traits

Differences due to:

- Time between scanning and slaughter was up to a year for some mobs
- Other research shows a moderate relationship between scanning and carcass traits (phenotypically)
- There has been no abattoir carcass data from NZ submitted to BREEDPLAN analyses and ultrasound scanning has facilitated good levels of genetic gain internationally. It is still the most useful data for carcass analysis as most pedigree cattle cannot be killed in slaughter groups that are large enough to be useful i.e. small numbers of cull heifers and bulls rather than whole mobs of steers as has been possible in the BPT.

B+LNZ Genetics Beef Progeny Test: Cohort 2 summary of adjusted progeny averages (rank) across 52 sires

							Carcass - Ultrasound Scanning					Carcass- Abattoir Beet EQ Fat Depth										
			Herdbook		Scan Eye Muscle Area		Scan Rib Fat		Scan Rump				Carcass Wt			Beef EG Reserve		Fat Depth (12/13th rib				
Breed	Born	Name	number	N. Calves		Rank		Rank		Rank	Scan IMF (%)	Rank		Rank [Dressing % R) Rank		Rank Ma	bling Rank	Ossification	Rank
NZ Angus	2014	FOCUS 143143	194990143143	24	65.3	14	3.8	13	5.5	22	3.4	14		42 53	3.83% 44	45.9%	14	7.1	5 351.9	34	145.6	6
NZ Angus		FOCUS 131511	194730131511		64.9	20	4.3	3	6.5	3	4.0	2	309.2		4.29%	45.7%	15	6.3	13 351.9	33	145.9	9
NZ Angus		FOCUS 131539	194730131539		62.5	4 8	3.3	33	5.2	36	3.4	17	307.6		4.26%	42.2%	40	6.1	20 384.6	3	146.8	21
NZ Angus		KAKAHU BOND 13007		21	63.2	44	3.7	15	5.9	12	3.5	8	012.1		4.39%	2 44.0%	28	6.2	15 351.7	36	148.8	43
NZ Angus		KAKAHU JUBILANT 13054	13300013054	22	63.2	43	3.5	24	5.0	39	3.4	9	313.8		4.10% 20	43.8%	30	7.0	6 364.2	13	148.8	41
NZ Angus		LINTON 13543	20305013543 19134010540		63.5 63.6	40	3.6	23	5.9	01	3.1	23			4.06% 3(3.93% 3(45.3% 44.9%	19	6.7	7 355.9 14 360.9	26	145.9	7
NZ Angus NZ Angus		MEADOWSLEA F540 MT MABLE FAT BOY 373	12188006373	18	63.5	3/	3.7	10	5.6	20	3.4	24	306.8		3.93% 30 4.07% 28	44.9% 45.3%	22	6.3	48 349.0	10	144.8	2/
NZ Angus		STORTH OAKS EVEREST J20	19507013J20	33	63.4	41	3.7 4.1	5	6.2	29	3.5	54 6	305.8		3.52%	43.7%	31	7.6	2 366.5	Α1	148.8	42
NZ Angus		STORTH OAKS JACK J7	19507013J7	31	63.6	36	3.4	30	5.2	35	3.6	4	305.9			52 43.2%	35	5.7	37 360.2	17	148.0	36
NZ Angus		TE MANIA JONAH 13588	16932013588	29	64.6	25	3.4	31	5.3	34	3.2	22			3.31%	1 44.8%	23	6.2	16 346.3	46	146.2	13
NZ Angus		TURIHAUA SIR CRUMBLE E222	17691009E222		64.2	31	3.0	47	5.1	37	2.5	47	309.5		3.81%	39.8%	50	5.8	31 331.9	51	145.9	10
NZ Angus		WAITANGI D213	18954008D213		62.4	49	3.8	12	5.8	15	2.8	40	303.6			43.2%	36	5.9	25 351.6	38	147.3	26
NZ Angus	2012	WHANGARA 12323	13649012323	25	64.4	28	3.6	22	5.4	26	3.5	7	318.5	1 54	4.34%	41.5%	47	5.9	27 364.9	11	146.9	23
Intl Angus	2012	DEER VALLEY ALL IN (USA)	US17307074	27	63.6	38	3.1	42	4.7	47	3.1	25	312.4		4.37%	48.1%	8	6.7	8 387.9	2	147.8	32
Intl Angus		V A R RESERVE 1111 (USA)	US16916944	18	64.4	29	3.1	41	4.8	44	3.1	31	309.4		4.17% 2	44.2%	27	6.0	22 357.6	23	146.3	15
Intl Angus		TE MANIA GARTH G67	AUVTMG67	25	64.3	30	4.1	7	6.5	4	3.6	3	313.8		3.70% 48	8 45.0%	21	7.2	4 350.0	39	146.0	11
Intl Angus			AUBNAD145		65.3	13	4.4	2	6.3	7	4.3	1	310.4			52.6%	2	7.5	3 389.9	1	146.8	20
NZ Hereford	2011	ARDO FARGO 1154	277111154	25		52	3.7	16	5.9	13	3.1	27	306.6		3.85% 42	45.4%	17	5.6	40 347.3	44	145.1	4
NZ Hereford		BLUESTONE 080014	1683080014	6	63.6	35	3.5	25	5./	18	3.2	21	308.2		3.82% 4. 3.79% 4.	46.2%	11	5.9	29 360.0 30 357.8	19	149.0 146.6	44
NZ Hereford		COLRAINE CODE WORD 13 139	1660130139		62.9	45 32	3.7	18	5.3	33	3.1	24	311.4			7 42.0% 42.8%	39	5.9	9 360.1	22	146.6	18
NZ Hereford NZ Hereford	2008	GRASSMERE SPARK 555 KOANUI CHIEFLY 2510	200080555	19	64.2 63.8	34	3.7	10	6.0	9	3.4	12	311.5		4.21%	9 42.8%	39	6.6	18 364.5	18	147.7	20
NZ Hereford		KOANUI UNANIMOUS 0408	216100408	12	62.3	51	3.0	20	5.3	21	2.7	41				47.3%	41	4.3	12 345.0	47	147.7	21
NZ Hereford		LIMEHILLS STAMPER 20719	677120719	18	66.0	7	3.2	34	5.3	30	2.7	12			4.47% 7	47.0%	0	6.3	10 346.9	45	145.9	8
NZ Hereford		MONYMUSK GALLANT 110089	272110089	11	65.4	12	3.6	20	5.6	20	3.4	13	308.7	-0	3.91%	46.1%	12	6.1	19 348.6	42	146.9	22
NZ Hereford		OKAWA MAJOR 2008	617120008	16	62.8	46	3.0	44	4.9	41	2.8	38				0 41.7%	44	5.9	28 354.1	30	147.6	29
NZ Hereford		ORARI GORGE MISCHIEF 120083	0400120083		62.4	50	3.9	9	6.0	10	3.0	3.5	306.7		3.91%	41.8%	43	5.6	38 356.3	24	149.7	47
Intl Hereford	2011	EFBEEF U208 FORTUNE Y848 (USA)	US43187500	25	64.2	33	3.5	26	5.4	25	3.0	33	305.3	50 54	4.23%	46.9%	10	4.9	51 356.3	25	148.5	39
Intl Hereford	2009	WIRRUNA ECHUCA E99	AUWNAE99	25	62.7	47	4.1	4	6.4	5	3.3	18	308.2	33 54	4.03%	44.3%	26	6.1	17 363.3	14	146.0	12
NZ Stabilizer	2012	FOCUS BIG GENE 121293	121293	25	66.6	3	2.9	50	4.4	50	3.1	29	314.9	3 54	4.77%	43.4%	34	5.4	43 355.5	27	151.7	52
NZ Stabilizer	2012	FOCUS FOREFRONT 121599	121599	30	63.2	42	3.3	37	5.5	23	3.4	15	306.2	45 54	4.39%	55.6%	1	5.6	381.5	4	150.7	50
NZ Stabilizer	2013	FOCUS FORCEFUL 135159	135159	20	64.5	27	3.8	11	5.5	24	3.3	20	306.2		4.48%	41.6%	46	5.1	49 351.6	37	149.2	45
NZ Stabilizer		FOCUS TRINITY 135263	135263	19	66.9	1	4.8	1	7.2	1	3.4	10	313.2		4.39%	0 44.3%	25	8.3	353.0	31	150.1	4 8
NZ Stabilizer		FOCUS PORTERHOUSE 135361	135361	31	64.9	18	3.0	46	4.7	46	3.3	19			4.44% 8	40.2%	4 8	4.6	52 336.2	50	143.4	1
		GLENSIDE CATALYST C23	1312AC0023	14	66.0	9	3.0	48	5.4	28	2.6	44	311.1		4.71% 2	43.4%	33	5.2	47 351.7	35	146.5	16
	2009	KERRAH AX49	1667AX0049	13	66.3	4	2.6	52	4.1	52	2.4	50	310.3		4.18% 20	45.6%	16	5.0	50 365.7	9	149.4	46
NZ Simmental		KERRAH BANDWAGON B306	1667AB0306 1667BB0464	14	66.3 64.9	3	3.7	14	5./	17	3.6	30	310.6 311.7		4.08% 23 4.03% 31	48.6% 43.1%	37	5./	35 378.4 36 357.9	5	147.0 146.8	24
NZ Simmental NZ Simmental		KERRAH BANKER B464 RISSINGTON AC244	0049AC0244	14	66.0	4	3.7	27	2.7	4	0.1	20	311./			43.1% 49.4%	3/	6.0	24 365.6	21	146.8	25
NZ Simmental		WAIKITE A B2038	1455AB2038	14	64.7	24	3.4	29	5.4	27	2.0	40	309.7		3.76% 3 4 4.11% 2 5	49.4% 39.1%	51	5.9	26 325.9	52	147.3	35
NZ Simmental		WAIKITE AMPLE AA2241	1455AA2241	14	45.1	16	2.9	10	4.5	10	2.4	48	310.7		4.37%	3 43.0%	38	5.7	44 342.4	10	147.8	34
NZ Simmental		WAIKITE AC2016	1455AC2016	5	64.6	26	3.6	21	5.3	32	3.0	32	312.3			43.8%	29	6.4	362.4	15	147.4	28
Intl Simmental		CDI RIMROCK 325Z (USA)	US2700121	13	65.7	10	3.3	36	4.9	40	3.4	16	308.2		4.53% 4	49.9%	3	5.2	46 377.6	6	148.1	37
Intl Simmental	2008	HOOKS YELLOWSTONE 97Y (USA)	US2612546	15	65.2	15	3.2	38	4.9	42	3.1	26	315.5	2 54	4.49% 5	44.4%	24	6.1	21 342.6	48	146.2	14
Intl Simmental	2003	RIVERBEND TAMARACK 60N PF (CAN)	CA618651	12	64.9	19	2.9	51	4.3	51	2.4	52	308.0	35 54	4.12%	40.2%	49	5.3	45 355.1	28	151.6	51
NZ Charolais	2013	CENTREWOOD 130516	001130516E	14	66.0	8	3.3	35	5.8	16	2.8	37	310.1	22 54	4.14% 2	49.0%	6	5.5	42 367.3	7	144.7	2
NZ Charolais	2011	HEMINGFORD GAMBLER G44	803110044E	6	65.5	11	3.0	45	4.5	48	2.6	45	311.0		4.60% 3	43.7%	32	5.8	349.1	40	145.6	5
NZ Charolais		KAITOKE COMMODORE C22	471070022E	12	65.0	17	3.1	43	5.1	38	2.4	51	007.0		3.90% 40	37.4%	52	5.8	347.3	43	148.3	38
NZ Charolais	2011	SILVERSTREAM GEDDES G102	083110102D	13	64.7	22	3.3	32	4.8	45	2.6	46			4.06% 29	41.7%	45	5.6	354.6	29	147.8	33
NZ Charolais		SIMCA HILLS VEEDUB	133040035E	6	66.9	2	3.2	40	4.9	43	2.6	43	312.6		4.42% 9	45.1%	20	5.8	352.3	32	148.6	40
	2010	LEACHMAN WHITE GOLD P0002X (USA)	USM/96550	6	64.7	23	3.5	28	5.6	19	2.9	36	308.6		4.15% 22	45.9%	13	6.0	23 358.4	20	146.5	17
Minimum	-	+			61.5		2.6		4.1		2.4		303.6 309.4		2.91%	37.4%		4.6	325.9		143.4	+
Average Maximum	-	+	-		64.4		3.5 4.8		7.2		3.1 4.3		318.5		4.09% 4.77%	44.6% 55.6%		6.0 8.3	357.1 389.9		147.5 151.7	+
MUXIMUM				40	00.7		14.0		1.2		14.3		310.3	54	1.//0	55.6%		0.3	389.9		Lower	
		Longer colored bars are associated						Ranked on		Ranked on									Ranked on		number	

Longer colored bars are associated Ranked on Ranked on Ranked on rumber with higher rank- which is more increased increased increased increased rankes preferable fathess fathess

In summary

Expectation

• We expect the sires EBVs to (on average) perform well in predicting the performance of their calves. In doing this they should show a positive upward slope where groups of bulls have better EBVs and a result- their calves are better. In a perfect world the slope of the graph would be slope = 0.5 where the EBV perfectly predicts calf performance. However, it is most useful to see whether there is a positive trend line, as EBVs are estimated. This shows us whether selection on an EBV will deliver actual improvement on a commercial farm. How strong that trend-line is compared to the theoretical expected value of 0.5, is the relationship to look at when proving an EBV to work (or not).

Reality

- Most sires EBVs (across the traits) lined up well and predicted the performance of their calves. On average they did a good job of improving ACTUAL performance. In fact, 73% of the sires EBVs (that we looked at) turned into actual calf performance.
- If you use improved EBVs you will get improved calves.

So why bother?

Better EBVs = better calves = better money

